Section 2.2 Power Rule
ΒΆWe can generalize the earlier example (\(g(x)=x^2\)) to arbitrary positive integer powers. Suppose \(h(x)=x^n\text{.}\) From the definition, we have
\begin{equation}
h(x+dx) \approx \frac{dh}{dx}\,dx\text{,}\tag{2.2.1}
\end{equation}
and expanding the left-hand side yields
\begin{equation}
(x+dx)^n = x^n + nx^{n-1}\,dx+\frac{n(n-1)}{2}x^{n-2}\,dx^2+...\text{.}\tag{2.2.2}
\end{equation}
Ignoring higher powers of \(dx\) as before, we obtain
\begin{equation}
\frac{dh}{dx} = nx^{n-1}\tag{2.2.3}
\end{equation}